Discover the most talked about and latest scientific content & concepts.

Concept: Biology


The CRISPR-associated endonuclease Cas9 binds to a guide RNA and cleaves double-stranded DNA with a sequence complementary to the RNA guide. The Cas9-RNA system has been harnessed for numerous applications, such as genome editing. Here we use high-speed atomic force microscopy (HS-AFM) to visualize the real-space and real-time dynamics of CRISPR-Cas9 in action. HS-AFM movies indicate that, whereas apo-Cas9 adopts unexpected flexible conformations, Cas9-RNA forms a stable bilobed structure and interrogates target sites on the DNA by three-dimensional diffusion. These movies also provide real-time visualization of the Cas9-mediated DNA cleavage process. Notably, the Cas9 HNH nuclease domain fluctuates upon DNA binding, and subsequently adopts an active conformation, where the HNH active site is docked at the cleavage site in the target DNA. Collectively, our HS-AFM data extend our understanding of the action mechanism of CRISPR-Cas9.

Concepts: DNA, Gene, Genetics, Biology, Virus, Genome, RNA, Endonuclease


Researchers have long been fascinated by the strong continuities evident in the oral traditions associated with different cultures. According to the ‘historic-geographic’ school, it is possible to classify similar tales into “international types” and trace them back to their original archetypes. However, critics argue that folktale traditions are fundamentally fluid, and that most international types are artificial constructs. Here, these issues are addressed using phylogenetic methods that were originally developed to reconstruct evolutionary relationships among biological species, and which have been recently applied to a range of cultural phenomena. The study focuses on one of the most debated international types in the literature: ATU 333, ‘Little Red Riding Hood’. A number of variants of ATU 333 have been recorded in European oral traditions, and it has been suggested that the group may include tales from other regions, including Africa and East Asia. However, in many of these cases, it is difficult to differentiate ATU 333 from another widespread international folktale, ATU 123, ‘The Wolf and the Kids’. To shed more light on these relationships, data on 58 folktales were analysed using cladistic, Bayesian and phylogenetic network-based methods. The results demonstrate that, contrary to the claims made by critics of the historic-geographic approach, it is possible to identify ATU 333 and ATU 123 as distinct international types. They further suggest that most of the African tales can be classified as variants of ATU 123, while the East Asian tales probably evolved by blending together elements of both ATU 333 and ATU 123. These findings demonstrate that phylogenetic methods provide a powerful set of tools for testing hypotheses about cross-cultural relationships among folktales, and point towards exciting new directions for research into the transmission and evolution of oral narratives.

Concepts: Evolution, Biology, Species, Phylogenetic tree, Phylogenetics, Folklore, Fairy tale, Little Red Riding Hood


Biological resurfacing of entire articular surfaces represents an important but challenging strategy for treatment of cartilage degeneration that occurs in osteoarthritis. Not only does this approach require anatomically sized and functional engineered cartilage, but the inflammatory environment within an arthritic joint may also inhibit chondrogenesis and induce degradation of native and engineered cartilage. The goal of this study was to use adult stem cells to engineer anatomically shaped, functional cartilage constructs capable of tunable and inducible expression of antiinflammatory molecules, specifically IL-1 receptor antagonist (IL-1Ra). Large (22-mm-diameter) hemispherical scaffolds were fabricated from 3D woven poly(ε-caprolactone) (PCL) fibers into two different configurations and seeded with human adipose-derived stem cells (ASCs). Doxycycline (dox)-inducible lentiviral vectors containing eGFP or IL-1Ra transgenes were immobilized to the PCL to transduce ASCs upon seeding, and constructs were cultured in chondrogenic conditions for 28 d. Constructs showed biomimetic cartilage properties and uniform tissue growth while maintaining their anatomic shape throughout culture. IL-1Ra-expressing constructs produced nearly 1 µg/mL of IL-1Ra upon controlled induction with dox. Treatment with IL-1 significantly increased matrix metalloprotease activity in the conditioned media of eGFP-expressing constructs but not in IL-1Ra-expressing constructs. Our findings show that advanced textile manufacturing combined with scaffold-mediated gene delivery can be used to tissue engineer large anatomically shaped cartilage constructs that possess controlled delivery of anticytokine therapy. Importantly, these cartilage constructs have the potential to provide mechanical functionality immediately upon implantation, as they will need to replace a majority, if not the entire joint surface to restore function.

Concepts: Biology, Extracellular matrix, Receptor, Cellular differentiation, Histology, Osteoarthritis, Engineering, Adult stem cell


The discovery of fluorescent proteins has revolutionized experimental biology. Whereas the majority of fluorescent proteins have been identified from cnidarians, recently several fluorescent proteins have been isolated across the animal tree of life. Here we show that biofluorescence is not only phylogenetically widespread, but is also phenotypically variable across both cartilaginous and bony fishes, highlighting its evolutionary history and the possibility for discovery of numerous novel fluorescent proteins. Fish biofluorescence is especially common and morphologically variable in cryptically patterned coral-reef lineages. We identified 16 orders, 50 families, 105 genera, and more than 180 species of biofluorescent fishes. We have also reconstructed our current understanding of the phylogenetic distribution of biofluorescence for ray-finned fishes. The presence of yellow long-pass intraocular filters in many biofluorescent fish lineages and the substantive color vision capabilities of coral-reef fishes suggest that they are capable of detecting fluoresced light. We present species-specific emission patterns among closely related species, indicating that biofluorescence potentially functions in intraspecific communication and evidence that fluorescence can be used for camouflage. This research provides insight into the distribution, evolution, and phenotypic variability of biofluorescence in marine lineages and examines the role this variation may play.

Concepts: Gene, Evolution, Molecular biology, Biology, Species, Fish, Phylogenetic tree, Vertebrate


Reconstructing the phylogenetic relationships that unite all lineages (the tree of life) is a grand challenge. The paucity of homologous character data across disparately related lineages currently renders direct phylogenetic inference untenable. To reconstruct a comprehensive tree of life, we therefore synthesized published phylogenies, together with taxonomic classifications for taxa never incorporated into a phylogeny. We present a draft tree containing 2.3 million tips-the Open Tree of Life. Realization of this tree required the assembly of two additional community resources: (i) a comprehensive global reference taxonomy and (ii) a database of published phylogenetic trees mapped to this taxonomy. Our open source framework facilitates community comment and contribution, enabling the tree to be continuously updated when new phylogenetic and taxonomic data become digitally available. Although data coverage and phylogenetic conflict across the Open Tree of Life illuminate gaps in both the underlying data available for phylogenetic reconstruction and the publication of trees as digital objects, the tree provides a compelling starting point for community contribution. This comprehensive tree will fuel fundamental research on the nature of biological diversity, ultimately providing up-to-date phylogenies for downstream applications in comparative biology, ecology, conservation biology, climate change, agriculture, and genomics.

Concepts: Evolution, Biology, Life, Species, Ecology, Phylogenetic tree, Phylogenetics, Cladistics


Here, I argue that computational thinking and techniques are so central to the quest of understanding life that today all biology is computational biology. Computational biology brings order into our understanding of life, it makes biological concepts rigorous and testable, and it provides a reference map that holds together individual insights. The next modern synthesis in biology will be driven by mathematical, statistical, and computational methods being absorbed into mainstream biological training, turning biology into a quantitative science.

Concepts: Scientific method, Evolution, Mathematics, Biology, Life, Species, Sociology, Logic


Epidemiological and genetic association studies show that genetics play an important role in the attainment of education. Here, we investigate the effect of this genetic component on the reproductive history of 109,120 Icelanders and the consequent impact on the gene pool over time. We show that an educational attainment polygenic score, POLYEDU, constructed from results of a recent study is associated with delayed reproduction (P < 10(-100)) and fewer children overall. The effect is stronger for women and remains highly significant after adjusting for educational attainment. Based on 129,808 Icelanders born between 1910 and 1990, we find that the average POLYEDU has been declining at a rate of ∼0.010 standard units per decade, which is substantial on an evolutionary timescale. Most importantly, because POLYEDU only captures a fraction of the overall underlying genetic component the latter could be declining at a rate that is two to three times faster.

Concepts: DNA, Gene, Genetics, Biology, Organism, Genome, Classical genetics, Genetic association


Diplodocidae are among the best known sauropod dinosaurs. Several species were described in the late 1800s or early 1900s from the Morrison Formation of North America. Since then, numerous additional specimens were recovered in the USA, Tanzania, Portugal, and Argentina, as well as possibly Spain, England, Georgia, Zimbabwe, and Asia. To date, the clade includes about 12 to 15 nominal species, some of them with questionable taxonomic status (e.g., ‘Diplodocus’ hayi or Dyslocosaurus polyonychius), and ranging in age from Late Jurassic to Early Cretaceous. However, intrageneric relationships of the iconic, multi-species genera Apatosaurus and Diplodocus are still poorly known. The way to resolve this issue is a specimen-based phylogenetic analysis, which has been previously implemented for Apatosaurus, but is here performed for the first time for the entire clade of Diplodocidae. The analysis includes 81 operational taxonomic units, 49 of which belong to Diplodocidae. The set of OTUs includes all name-bearing type specimens previously proposed to belong to Diplodocidae, alongside a set of relatively complete referred specimens, which increase the amount of anatomically overlapping material. Non-diplodocid outgroups were selected to test the affinities of potential diplodocid specimens that have subsequently been suggested to belong outside the clade. The specimens were scored for 477 morphological characters, representing one of the most extensive phylogenetic analyses of sauropod dinosaurs. Character states were figured and tables given in the case of numerical characters. The resulting cladogram recovers the classical arrangement of diplodocid relationships. Two numerical approaches were used to increase reproducibility in our taxonomic delimitation of species and genera. This resulted in the proposal that some species previously included in well-known genera like Apatosaurus and Diplodocus are generically distinct. Of particular note is that the famous genus Brontosaurus is considered valid by our quantitative approach. Furthermore, “Diplodocus” hayi represents a unique genus, which will herein be called Galeamopus gen. nov. On the other hand, these numerical approaches imply synonymization of “Dinheirosaurus” from the Late Jurassic of Portugal with the Morrison Formation genus Supersaurus. Our use of a specimen-, rather than species-based approach increases knowledge of intraspecific and intrageneric variation in diplodocids, and the study demonstrates how specimen-based phylogenetic analysis is a valuable tool in sauropod taxonomy, and potentially in paleontology and taxonomy as a whole.

Concepts: Biology, Sauropoda, Dinosaur, Diplodocus, Supersaurus, Jurassic, Brachiosaurus, Camarasaurus


Life course epidemiology has used models of accumulation and critical or sensitive periods to examine the importance of exposure timing in disease aetiology. These models are usually used to describe the direct effects of exposures over the life course. In comparison with consideration of direct effects only, we show how consideration of total effects improves interpretation of these models, giving clearer notions of when it will be most effective to intervene. We show how life course variation in the total effects depends on the magnitude of the direct effects and the stability of the exposure. We discuss interpretation in terms of total, direct and indirect effects and highlight the causal assumptions required for conclusions as to the most effective timing of interventions.

Concepts: Improve, Biology


Stretching elastic tissues and using their recoil to power movement allows organisms to release energy more rapidly than by muscle contraction directly, thus amplifying power output. Chameleons employ such a mechanism to ballistically project their tongue up to two body lengths, achieving power outputs nearly three times greater than those possible via muscle contraction. Additionally, small organisms tend to be capable of greater performance than larger species performing similar movements. To test the hypothesis that small chameleon species outperform larger species during ballistic tongue projection, performance was examined during feeding among 20 chameleon species in nine genera. This revealed that small species project their tongues proportionately further than large species, achieving projection distances of 2.5 body lengths. Furthermore, feedings with peak accelerations of 2,590 m s(-2), or 264 g, and peak power output values of 14,040 W kg(-1) are reported. These values represent the highest accelerations and power outputs reported for any amniote movement, highlighting the previously underestimated performance capability of the family. These findings show that examining movements in smaller animals may expose movements harbouring cryptic power amplification mechanisms and illustrate how varying metabolic demands may help drive morphological evolution.

Concepts: Evolution, Metabolism, Biology, Organism, Species, Genus, Tongue, Chameleon