SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Apicomplexa

160

Piroplasmosis are among the most relevant diseases of domestic animals. Babesia is emerging as cause of tick-borne zoonosis worldwide and free-living animals are reservoir hosts of several zoonotic Babesia species. We investigated the epidemiology of Babesia spp. and Theileria spp. in wild ungulates and carnivores from Northern Italy to determine which of these apicomplexan species circulate in wildlife and their prevalence of infection.

Concepts: Disease, Apicomplexa, Switzerland, Italy, Austria, Babesia, Slovenia, Alps

151

The family of cysteine rich proteins of the oocyst wall (COWPs) originally described in Cryptosporidium can also be found in Toxoplasma gondii (TgOWPs) localised to the oocyst wall as well. Genome sequence analysis of Eimeria suggests that these proteins may also exist in this genus and led us to the assumption that these proteins may also play a role in oocyst wall formation.

Concepts: Apicomplexa, Toxoplasma gondii, Coccidia

145

Anti-malarial drugs are the major focus in the prevention and treatment of malaria. Artemisinin-based combination therapy (ACT) is the WHO recommended first-line treatment for Plasmodium falciparum malaria across the endemic world. Also ACT is increasingly relied upon in treating Plasmodium vivax malaria where chloroquine is failing. The emergence of artemisinin drug-resistant parasites is a serious threat faced by global malaria control programmes. Therefore, the success of treatment and intervention strategies is highly pegged on understanding the genetic basis of resistance.

Concepts: Malaria, Plasmodium falciparum, Plasmodium, Plasmodium vivax, Apicomplexa, Artemisinin, Chloroquine, Plasmodium malariae

143

Expanded malaria control efforts in Sénégal have resulted in increased use of rapid diagnostic tests (RDT) to identify the primary disease-causing Plasmodium species, Plasmodium falciparum. However, the type of RDT utilized in Sénégal does not detect other malaria-causing species such as Plasmodium ovale spp., Plasmodium malariae, or Plasmodium vivax. Consequently, there is a lack of information about the frequency and types of malaria infections occurring in Sénégal. This study set out to better determine whether species other than P. falciparum were evident among patients evaluated for possible malaria infection in Kédougou, Sénégal.

Concepts: Immune system, Malaria, Plasmodium falciparum, Plasmodium, Plasmodium vivax, Apicomplexa, Chloroquine, Plasmodium ovale

139

Symptomatic forms of toxoplasmosis are a serious public health problem and occur in around 10-20% of the infected people. Aiming to improve the molecular diagnosis of symptomatic toxoplasmosis in Brazilian patients, this study evaluated the performance of real time PCR (qPCR) testing two primer sets (B1 and REP-529) in detecting Toxoplasma gondii DNA. The methodology was assayed in 807 clinical samples with known clinical diagnosis, ELISA, and conventional PCR (cPCR) results in a 9-year period. All samples were from patients with clinical suspicion of several features of toxoplasmosis. According to the minimum detection limit curve (in CT), REP-529 had greater sensitivity to detect T. gondii DNA than B1. Both primer sets were retrospectively evaluated using 515 DNA from different clinical samples. The 122 patients without toxoplasmosis provided high specificity (REP-529, 99.2% and B1, 100%). From the 393 samples with positive ELISA, 146 had clinical diagnosis of toxoplasmosis and positive cPCR. REP-529 and B1 sensitivities were 95.9% and 83.6%, respectively. Comparison of REP-529 and B1 performances was further analyzed prospectively in 292 samples. Thus, from a total of 807 DNA analyzed, 217 (26.89%) had positive PCR with, at least one primer set and symptomatic toxoplasmosis confirmed by clinical diagnosis. REP-529 was positive in 97.23%, whereas B1 amplified only 78.80%. After comparing several samples in a Brazilian referral laboratory, this study concluded that REP-529 primer set had better performance than B1 one. These observations were based after using cases with defined clinical diagnosis, ELISA, and cPCR.

Concepts: Polymerase chain reaction, Molecular biology, Sensitivity and specificity, Apicomplexa, Toxoplasmosis, Toxoplasma gondii, Coccidia

135

We present case histories of four patients treated with artemether-lumefantrine for falciparum malaria in UK hospitals in 2015-16. Each subsequently presented with recurrent symptoms and Plasmodium falciparum parasitaemia within 6 weeks of treatment with no intervening travel to malarious countries. Parasite isolates, all of African origin, harboured variants at some candidate resistance loci. No evidence of pfk13-mediated artemisinin resistance was found. Vigilance for signs of unsatisfactory antimalarial efficacy among imported cases of malaria is recommended.

Concepts: Malaria, Plasmodium falciparum, Plasmodium, Plasmodium vivax, Anopheles, Quinine, Apicomplexa, Artemisinin

135

BACKGROUND: A radiation-attenuated Plasmodium falciparum (Pf) sporozoite (SPZ) malaria vaccine, PfSPZ Vaccine, protected 6 of 6 subjects (100%) against homologous Pf (same strain as in the vaccine) controlled human malaria infection (CHMI) 3 weeks after 5 doses administered intravenously. The next step was to assess protective efficacy against heterologous Pf (different from Pf in the vaccine), after fewer doses, and at 24 weeks. METHODS: The trial assessed tolerability, safety, immunogenicity, and protective efficacy of direct venous inoculation (DVI) of 3 or 5 doses of PfSPZ Vaccine in non-immune subjects. RESULTS: Three weeks after final immunization, 5 doses of 2.7 × 10(5) PfSPZ protected 12 of 13 recipients (92.3% [95% CI: 48.0, 99.8]) against homologous CHMI and 4 of 5 (80.0% [10.4, 99.5]) against heterologous CHMI; 3 doses of 4.5 × 10(5) PfSPZ protected 13 of 15 (86.7% [35.9, 98.3]) against homologous CHMI. Twenty-four weeks after final immunization, the 5-dose regimen protected 7 of 10 (70.0% [17.3, 93.3]) against homologous and 1 of 10 (10.0% [-35.8, 45.6]) against heterologous CHMI; the 3-dose regimen protected 8 of 14 (57.1% [21.5, 76.6]) against homologous CHMI. All 22 controls developed Pf parasitemia. PfSPZ Vaccine was well tolerated, safe, and easy to administer. No antibody or T cell responses correlated with protection. CONCLUSIONS: We have demonstrated for the first time to our knowledge that PfSPZ Vaccine can protect against a 3-week heterologous CHMI in a limited group of malaria-naive adult subjects. A 3-dose regimen protected against both 3-week and 24-week homologous CHMI (87% and 57%, respectively) in this population. These results provide a foundation for developing an optimized immunization regimen for preventing malaria. TRIAL REGISTRATION: ClinicalTrials.gov NCT02215707. FUNDING: Support was provided through the US Army Medical Research and Development Command, Military Infectious Diseases Research Program, and the Naval Medical Research Center’s Advanced Medical Development Program.

Concepts: Immune system, Infectious disease, Malaria, Plasmodium falciparum, Plasmodium, Vaccination, Plasmodium vivax, Apicomplexa

106

The diagnosis and treatment of Plasmodium vivax malaria differs from that of Plasmodium falciparum malaria in fundamentally important ways. This article reviews the guiding principles, practices, and evidence underpinning the diagnosis and treatment of P vivax malaria.

Concepts: Malaria, Plasmodium falciparum, Plasmodium, Plasmodium vivax, Anopheles, Apicomplexa, Chloroquine, Plasmodium malariae

104

Cyclic GMP (cGMP)-dependent protein kinase (protein kinase G [PKG]) is essential for microneme secretion, motility, invasion, and egress in apicomplexan parasites, However, the separate roles of two isoforms of the kinase that are expressed by some apicomplexans remain uncertain. Despite having identical regulatory and catalytic domains, PKG(I) is plasma membrane associated whereas PKG(II) is cytosolic in Toxoplasma gondii To determine whether these isoforms are functionally distinct or redundant, we developed an auxin-inducible degron (AID) tagging system for conditional protein depletion in T. gondii By combining AID regulation with genome editing strategies, we determined that PKG(I) is necessary and fully sufficient for PKG-dependent cellular processes. Conversely, PKG(II) is functionally insufficient and dispensable in the presence of PKG(I) The difference in functionality mapped to the first 15 residues of PKG(I), containing a myristoylated Gly residue at position 2 that is critical for membrane association and PKG function. Collectively, we have identified a novel requirement for cGMP signaling at the plasma membrane and developed a new system for examining essential proteins in T. gondiiIMPORTANCEToxoplasma gondii is an obligate intracellular apicomplexan parasite and important clinical and veterinary pathogen that causes toxoplasmosis. Since apicomplexans can only propagate within host cells, efficient invasion is critically important for their life cycles. Previous studies using chemical genetics demonstrated that cyclic GMP signaling through protein kinase G (PKG)-controlled invasion by apicomplexan parasites. However, these studies did not resolve functional differences between two compartmentalized isoforms of the kinase. Here we developed a conditional protein regulation tool to interrogate PKG isoforms in T. gondii We found that the cytosolic PKG isoform was largely insufficient and dispensable. In contrast, the plasma membrane-associated isoform was necessary and fully sufficient for PKG function. Our studies identify the plasma membrane as a key location for PKG activity and provide a broadly applicable system for examining essential proteins in T. gondii.

Concepts: Cell, Molecular biology, Signal transduction, Cell membrane, Apicomplexa, Toxoplasmosis, Toxoplasma gondii, Coccidia

96

BACKGROUND: Simian malaria is still an open question concerning the species of Plasmodium parasites and species of New World monkeys susceptible to the parasites. In addition, the lingering question as to whether these animals are reservoirs for human malaria might become important especially in a scenario of eradication of the disease. To aid in the answers to these questions, monkeys were surveyed for malaria parasite natural infection in the Amazonian state of Rondonia, Brazil, a state with intense environmental alterations due to human activities, which facilitated sampling of the animals. METHODS: Parasites were detected and identified in DNA from blood of monkeys, by PCR with primers for the 18S rRNA, CSP and MSP1 genes and sequencing of the amplified fragments. Multiplex PCR primers for the 18S rRNA genes were designed for the parasite species Plasmodium falciparum and Plasmodium vivax, Plasmodium malariae/Plasmodium brasilianum and Plasmodium simium. RESULTS: An overall infection rate of 10.9% was observed or 20 out 184 monkey specimens surveyed, mostly by P. brasilianum. However, four specimens of monkeys were found infected with P. falciparum, two of them doubly infected with P. brasilianum and P. falciparum. In addition, a species of monkey of the family Aotidae, Aotus nigriceps, is firstly reported here naturally infected with P. brasilianum. None of the monkeys surveyed was found infected with P. simium/P. vivax. CONCLUSION: The rate of natural Plasmodium infection in monkeys in the Brazilian state of Rondonia is in line with previous surveys of simian malaria in the Amazon region. The fact that a monkey species was found that had not previously been described to harbour malaria parasites indicates that the list of monkey species susceptible to Plasmodium infection is yet to be completed. Furthermore, finding monkeys in the region infected with P. falciparum clearly indicates parasite transfer from humans to the animals. Whether this parasite can be transferred back to humans and how persistent the parasite is in monkeys in the wild so to be efficient reservoirs of the disease, is yet to be evaluated. Finding different species of monkeys infected with this parasite species suggests indeed that these animals can act as reservoirs of human malaria.

Concepts: Immune system, Malaria, Plasmodium falciparum, Plasmodium, Plasmodium vivax, Anopheles, Apicomplexa, Monkey