SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Amazon Rainforest

351

True river dolphins are some of the rarest and most endangered of all vertebrates. They comprise relict evolutionary lineages of high taxonomic distinctness and conservation value, but are afforded little protection. We report the discovery of a new species of a river dolphin from the Araguaia River basin of Brazil, the first such discovery in nearly 100 years. The species is diagnosable by a series of molecular and morphological characters and diverged from its Amazonian sister taxon 2.08 million years ago. The estimated time of divergence corresponds to the separation of the Araguaia-Tocantins basin from the Amazon basin. This discovery highlights the immensity of the deficit in our knowledge of Neotropical biodiversity, as well as vulnerability of biodiversity to anthropogenic actions in an increasingly threatened landscape. We anticipate that this study will provide an impetus for the taxonomic and conservation reanalysis of other taxa shared between the Araguaia and Amazon aquatic ecosystems, as well as stimulate historical biogeographical analyses of the two basins.

Concepts: Biodiversity, Species, Ecology, Drainage basin, Amazon River, Brazil, Amazon Basin, Amazon Rainforest

270

Developing countries are increasingly decentralizing forest governance by granting indigenous groups and other local communities formal legal title to land. However, the effects of titling on forest cover are unclear. Rigorous analyses of titling campaigns are rare, and related theoretical and empirical research suggests that they could either stem or spur forest damage. We analyze such a campaign in the Peruvian Amazon, where more than 1,200 indigenous communities comprising some 11 million ha have been titled since the mid-1970s. We use community-level longitudinal data derived from high-resolution satellite images to estimate the effect of titling between 2002 and 2005 on contemporaneous forest clearing and disturbance. Our results indicate that titling reduces clearing by more than three-quarters and forest disturbance by roughly two-thirds in a 2-y window spanning the year title is awarded and the year afterward. These results suggest that awarding formal land titles to local communities can advance forest conservation.

Concepts: South America, United Nations, Bolivia, Amazon Basin, Indigenous peoples, Title, Peru, Amazon Rainforest

221

Tropical rainforest regions have large hydropower generation potential that figures prominently in many nations' energy growth strategies. Feasibility studies of hydropower plants typically ignore the effect of future deforestation or assume that deforestation will have a positive effect on river discharge and energy generation resulting from declines in evapotranspiration (ET) associated with forest conversion. Forest loss can also reduce river discharge, however, by inhibiting rainfall. We used land use, hydrological, and climate models to examine the local “direct” effects (through changes in ET within the watershed) and the potential regional “indirect” effects (through changes in rainfall) of deforestation on river discharge and energy generation potential for the Belo Monte energy complex, one of the world’s largest hydropower plants that is currently under construction on the Xingu River in the eastern Amazon. In the absence of indirect effects of deforestation, simulated deforestation of 20% and 40% within the Xingu River basin increased discharge by 4-8% and 10-12%, with similar increases in energy generation. When indirect effects were considered, deforestation of the Amazon region inhibited rainfall within the Xingu Basin, counterbalancing declines in ET and decreasing discharge by 6-36%. Under business-as-usual projections of forest loss for 2050 (40%), simulated power generation declined to only 25% of maximum plant output and 60% of the industry’s own projections. Like other energy sources, hydropower plants present large social and environmental costs. Their reliability as energy sources, however, must take into account their dependence on forests.

Concepts: Hydrology, Amazon River, Brazil, Rainforest, Tropical rainforest, Amazon Basin, Amazon Rainforest, Xingu River

96

Amazonia is the most biodiverse rainforest on Earth, and the debate over how many tree species grow there remains contentious. Here we provide a checklist of all tree species collected to date, and describe spatial and temporal trends in data accumulation. We report 530,025 unique collections of trees in Amazonia, dating between 1707 and 2015, for a total of 11,676 species in 1225 genera and 140 families. These figures support recent estimates of 16,000 total Amazonian tree species based on ecological plot data from the Amazonian Tree Diversity Network. Botanical collection in Amazonia is characterized by three major peaks, centred around 1840, 1920, and 1980, which are associated with flora projects and the establishment of inventory plots. Most collections were made in the 20th century. The number of collections has increased exponentially, but shows a slowdown in the last two decades. We find that a species' range size is a better predictor of the number of times it has been collected than the species' estimated basin-wide population size. Finding, describing, and documenting the distribution of the remaining species will require coordinated efforts at under-collected sites.

Concepts: Biodiversity, Biology, Species, Tree, 20th century, Brazil, Rainforest, Amazon Rainforest

92

Considerable interest in the relationship between biodiversity and disease has recently captured the attention of the research community, with important public policy implications. In particular, malaria in the Amazon region is often cited as an example of how forest conservation can improve public health outcomes. However, despite a growing body of literature and an increased understanding of the relationship between malaria and land use / land cover change (LULC) in Amazonia, contradictions have emerged. While some studies report that deforestation increases malaria risk, others claim the opposite. Assessing malaria risk requires examination of dynamic processes among three main components: (i) the environment (i.e. LULC and landscape transformations), (ii) vector biology (e.g. mosquito species distributions, vector activity and life cycle, plasmodium infection rates), and (iii) human populations (e.g. forest-related activity, host susceptibility, movement patterns). In this paper, we conduct a systematic literature review on malaria risk and deforestation in the Amazon focusing on these three components. We explore key features that are likely to generate these contrasting results using the reviewed articles and our own data from Brazil and Peru, and conclude with suggestions for productive avenues in future research.This article is part of the themed issue ‘Conservation, biodiversity and infectious disease: scientific evidence and policy implications’.

Concepts: Infectious disease, Malaria, Infection, Systematic review, Amazon River, Brazil, Deforestation, Amazon Rainforest

90

Mining poses significant and potentially underestimated risks to tropical forests worldwide. In Brazil’s Amazon, mining drives deforestation far beyond operational lease boundaries, yet the full extent of these impacts is unknown and thus neglected in environmental licensing. Here we quantify mining-induced deforestation and investigate the aspects of mining operations, which most likely contribute. We find mining significantly increased Amazon forest loss up to 70 km beyond mining lease boundaries, causing 11,670 km(2) of deforestation between 2005 and 2015. This extent represents 9% of all Amazon forest loss during this time and 12 times more deforestation than occurred within mining leases alone. Pathways leading to such impacts include mining infrastructure establishment, urban expansion to support a growing workforce, and development of mineral commodity supply chains. Mining-induced deforestation is not unique to Brazil; to mitigate adverse impacts of mining and conserve tropical forests globally, environmental assessments and licensing must considered both on- and off-lease sources of deforestation.

Concepts: Forest, Amazon River, Brazil, Rainforest, Tropical rainforest, Amazon Basin, Tropical and subtropical moist broadleaf forests, Amazon Rainforest

66

State-controlled protected areas (PAs) have dominated conservation strategies globally, yet their performance relative to other governance regimes is rarely assessed comprehensively. Furthermore, performance indicators of forest PAs are typically restricted to deforestation, although the extent of forest degradation is greater. We address these shortfalls through an empirical impact evaluation of state PAs, Indigenous Territories (ITs), and civil society and private Conservation Concessions (CCs) on deforestation and degradation throughout the Peruvian Amazon. We integrated remote-sensing data with environmental and socio-economic datasets, and used propensity-score matching to assess: (i) how deforestation and degradation varied across governance regimes between 2006-2011; (ii) their proximate drivers; and (iii) whether state PAs, CCs and ITs avoided deforestation and degradation compared with logging and mining concessions, and the unprotected landscape. CCs, state PAs, and ITs all avoided deforestation and degradation compared to analogous areas in the unprotected landscape. CCs and ITs were on average more effective in this respect than state PAs, showing that local governance can be equally or more effective than centralized state regimes. However, there were no consistent differences between conservation governance regimes when matched to logging and mining concessions. Future impact assessments would therefore benefit from further disentangling governance regimes across unprotected land.

Concepts: Evaluation, Assessment, Rainforest, Amazon Basin, Peru, Tropical and subtropical moist broadleaf forests, Amazon Rainforest, Peruvian Amazon

66

The Amazon basin is the largest and most species-rich tropical forest and river system in the world, playing a pivotal role in global climate regulation and harboring hundreds of traditional and indigenous cultures. It is a matter of intense debate whether the ecosystem is threatened by hunting practices, whereby an “empty forest” loses critical ecological functions. Strikingly, no previous study has examined Amazonian ecosystem resilience through the perspective of the massive 20th century international trade in furs and skins. We present the first historical account of the scale and impacts of this trade and show that whereas aquatic species suffered basin-wide population collapse, terrestrial species did not. We link this differential resilience to the persistence of adequate spatial refuges for terrestrial species, enabling populations to be sustained through source-sink dynamics, contrasting with unremitting hunting pressure on more accessible aquatic habitats. Our findings attest the high vulnerability of aquatic fauna to unregulated hunting, particularly during years of severe drought. We propose that the relative resilience of terrestrial species suggests a marked opportunity for managing, rather than criminalizing, contemporary traditional subsistence hunting in Amazonia, through both the engagement of local people in community-based comanagement programs and science-led conservation governance.

Concepts: Ecosystem, Amazon River, Brazil, Rainforest, Amazon Basin, Indigenous peoples, Amazon Rainforest, Peruvian Amazon

59

Recent debates on the number of plant species in the vast lowland rain forests of the Amazon have been based largely on model estimates, neglecting published checklists based on verified voucher data. Here we collate taxonomically verified checklists to present a list of seed plant species from lowland Amazon rain forests. Our list comprises 14,003 species, of which 6,727 are trees. These figures are similar to estimates derived from nonparametric ecological models, but they contrast strongly with predictions of much higher tree diversity derived from parametric models. Based on the known proportion of tree species in neotropical lowland rain forest communities as measured in complete plot censuses, and on overall estimates of seed plant diversity in Brazil and in the neotropics in general, it is more likely that tree diversity in the Amazon is closer to the lower estimates derived from nonparametric models. Much remains unknown about Amazonian plant diversity, but this taxonomically verified dataset provides a valid starting point for macroecological and evolutionary studies aimed at understanding the origin, evolution, and ecology of the exceptional biodiversity of Amazonian forests.

Concepts: Biodiversity, Evolution, Plant, Ecology, Tree, Brazil, Rainforest, Amazon Rainforest

59

Ayahuasca is an Amazonian psychoactive brew of two main components. Its active agents are β-carboline and tryptamine derivatives. As a sacrament, ayahuasca is still a central element of many healing ceremonies in the Amazon Basin and its ritual consumption has become common among the mestizo populations of South America. Ayahuasca use amongst the indigenous people of the Amazon is a form of traditional medicine and cultural psychiatry. During the last two decades, the substance has become increasingly known among both scientists and laymen, and currently its use is spreading all over in the Western world. In the present paper we describe the chief characteristics of ayahuasca, discuss important questions raised about its use, and provide an overview of the scientific research supporting its potential therapeutic benefits. A growing number of studies indicate that the psychotherapeutic potential of ayahuasca is based mostly on the strong serotonergic effects, whereas the sigma-1 receptor (Sig-1R) agonist effect of its active ingredient dimethyltryptamine raises the possibility that the ethnomedical observations on the diversity of treated conditions can be scientifically verified. Moreover, in the right therapeutic or ritual setting with proper preparation and mindset of the user, followed by subsequent integration of the experience, ayahuasca has proven effective in the treatment of substance dependence. This article has two important take-home messages: (1) the therapeutic effects of ayahuasca are best understood from a bio-psycho-socio-spiritual model, and (2) on the biological level ayahuasca may act against chronic low grade inflammation and oxidative stress via the Sig-1R which can explain its widespread therapeutic indications.

Concepts: Scientific method, Amazon River, South America, Amazon Basin, Indigenous peoples of the Americas, Peru, Amazon Rainforest, Dimethyltryptamine