Discover the most talked about and latest scientific content & concepts.

Concept: Aftershock


Abnormal increases in radon ((222)Rn, half-life = 3.82 days) activity have occasionally been observed in underground environments before major earthquakes. However, (222)Rn alone could not be used to forecast earthquakes since it can also be increased due to diffusive inputs over its lifetime. Here, we show that a very short-lived isotope, thoron ((220)Rn, half-life = 55.6 s; mean life = 80 s), in a cave can record earthquake signals without interference from other environmental effects. We monitored (220)Rn together with (222)Rn in air of a limestone-cave in Korea for one year. Unusually large (220)Rn peaks were observed only in February 2011, preceding the 2011 M9.0 Tohoku-Oki Earthquake, Japan, while large (222)Rn peaks were observed in both February 2011 and the summer. Based on our analyses, we suggest that the anomalous peaks of (222)Rn and (220)Rn activities observed in February were precursory signals related to the Tohoku-Oki Earthquake. Thus, the (220)Rn-(222)Rn combined isotope pair method can present new opportunities for earthquake forecasting if the technique is extensively employed in earthquake monitoring networks around the world.

Concepts: Future, Japan, Forecasting, Earthquake, Earthquake prediction, Aftershock, 1906 San Francisco earthquake, Earthquakes


Large earthquakes trigger very small earthquakes globally during passage of the seismic waves and during the following several hours to days, but so far remote aftershocks of moment magnitude M ≥ 5.5 have not been identified, with the lone exception of an M = 6.9 quake remotely triggered by the surface waves from an M = 6.6 quake 4,800 kilometres away. The 2012 east Indian Ocean earthquake that had a moment magnitude of 8.6 is the largest strike-slip event ever recorded. Here we show that the rate of occurrence of remote M ≥ 5.5 earthquakes (>1,500 kilometres from the epicentre) increased nearly fivefold for six days after the 2012 event, and extended in magnitude to M ≤ 7. These global aftershocks were located along the four lobes of Love-wave radiation; all struck where the dynamic shear strain is calculated to exceed 10(-7) for at least 100 seconds during dynamic-wave passage. The other M ≥ 8.5 mainshocks during the past decade are thrusts; after these events, the global rate of occurrence of remote M ≥ 5.5 events increased by about one-third the rate following the 2012 shock and lasted for only two days, a weaker but possibly real increase. We suggest that the unprecedented delayed triggering power of the 2012 earthquake may have arisen because of its strike-slip source geometry or because the event struck at a time of an unusually low global earthquake rate, perhaps increasing the number of nucleation sites that were very close to failure.

Concepts: English-language films, Indian Ocean, Earthquake, Tsunami, Seismic wave, Fault, Epicenter, Aftershock


Earthquake forecasting is the ultimate challenge for seismologists, because it condenses the scientific knowledge about the earthquake occurrence process, and it is an essential component of any sound risk mitigation planning. It is commonly assumed that, in the short term, trustworthy earthquake forecasts are possible only for typical aftershock sequences, where the largest shock is followed by many smaller earthquakes that decay with time according to the Omori power law. We show that the current Italian operational earthquake forecasting system issued statistically reliable and skillful space-time-magnitude forecasts of the largest earthquakes during the complex 2016-2017 Amatrice-Norcia sequence, which is characterized by several bursts of seismicity and a significant deviation from the Omori law. This capability to deliver statistically reliable forecasts is an essential component of any program to assist public decision-makers and citizens in the challenging risk management of complex seismic sequences.

Concepts: Forecasting, Earthquake, Earthquake engineering, Seismology, Earthquake prediction, Aftershock, Earthquake storm, Seismometer


The Mw 5.5 earthquake that struck South Korea in November 2017 was one of the largest and most damaging events in this country over the last century. Its proximity to an Enhanced Geothermal Systems site, where high pressure hydraulic injection had been performed during the previous two years, raises the possibility that this earthquake was anthropogenic. We have combined seismological and geodetic analyses to characterize the mainshock and its largest aftershocks, constrain the geometry of this seismic sequence and shed light on its casual factors. According to our analysis it seems plausible that the occurrence of this earthquake was influenced by these industrial activities. Finally we found that the earthquake transferred static stress to larger nearby faults, potentially increasing the seismic hazard in the area.

Concepts: Mathematical analysis, Japan, Earthquake, Earthquake engineering, Real analysis, Seismic wave, Seismology, Aftershock


Geothermal power is a growing energy source; however, efforts to increase production are tempered by concern over induced earthquakes. Although increased seismicity commonly accompanies geothermal production, induced earthquake rate cannot currently be forecast based on fluid injection volumes or any other operational parameters. We show that at the Salton Sea Geothermal Field, the total volume of fluid extracted or injected tracks the long-term evolution of seismicity. After correcting for the aftershock rate, the net fluid volume (extracted-injected) provides the best correlation with seismicity in recent years. We model the background earthquake rate with a linear combination of injection and net production rates that allows us to track the secular development of the field as the number of earthquakes per fluid volume injected decreases over time.

Concepts: Fundamental physics concepts, Earthquake, Earthquake prediction, Geothermal power, Aftershock


The state of Oklahoma has experienced an unprecedented increase in earthquake activity since 2009, likely driven by large-scale wastewater injection operations. Statewide injection rates peaked in early 2015 and steadily decreased thereafter, approximately coinciding with collapsing oil prices and regulatory action. If seismic activity is primarily driven by fluid injection, a noticeable seismogenic response to the decrease in injection rates is expected. Langenbruch and Zoback suggest that “the probability of potentially damaging larger events, should significantly decrease by the end of 2016 and approach historic levels within a few years.” We agree that the rate of small earthquakes has decreased toward the second half of 2016. However, their specific predictions about seismic hazard require reexamination. We test the influence of the model parameters of Langenbruch and Zoback based on fits to observed seismicity distributions. The results suggest that a range of realistic aftershock decay rates and b values can lead to an increase in moderate earthquake probabilities from 37 to 80% in 2017 without any further alteration to the model. In addition, the observation that all four M ≥ 5 earthquakes to date occurred when injection rates were below the triggering threshold of Langenbruch and Zoback challenges the applicability of the model for the most societally significant events.

Concepts: Earthquake, Earthquake engineering, Seismic wave, Seismology, Aftershock, Intraplate earthquake


The Pawnee M5.8 earthquake is the largest event in Oklahoma instrument recorded history. It occurred near the edge of active seismic zones, similar to other M5+ earthquakes since 2011. It ruptured a previously unmapped fault and triggered aftershocks along a complex conjugate fault system. With a high-resolution earthquake catalog, we observe propagating foreshocks leading to the mainshock within 0.5 km distance, suggesting existence of precursory aseismic slip. At approximately 100 days before the mainshock, two M ≥ 3.5 earthquakes occurred along a mapped fault that is conjugate to the mainshock fault. At about 40 days before, two earthquakes clusters started, with one M3 earthquake occurred two days before the mainshock. The three M ≥ 3 foreshocks all produced positive Coulomb stress at the mainshock hypocenter. These foreshock activities within the conjugate fault system are near-instantaneously responding to variations in injection rates at 95% confidence. The short time delay between injection and seismicity differs from both the hypothetical expected time scale of diffusion process and the long time delay observed in this region prior to 2016, suggesting a possible role of elastic stress transfer and critical stress state of the fault. Our results suggest that the Pawnee earthquake is a result of interplay among injection, tectonic faults, and foreshocks.

Concepts: Hypothesis, Earthquake, Seismic wave, Seismology, The Edge, Epicenter, Aftershock, Hypocenter


The extent to which ongoing seismicity in intraplate regions represents long-lived aftershock activity is unclear. We examined historical and instrumental seismicity in the New Madrid, central U.S. region to determine whether present-day seismicity is composed predominantly of aftershocks of the 1811-1812 earthquake sequence. High aftershock productivity is required to match both the observation of multiple mainshocks and to explain the modern level of activity as aftershocks; synthetic sequences consistent with these observations substantially overpredict the number of M ≥ 6 events that were observed in the last 200 years. Our results imply that ongoing background seismicity in the New Madrid region is driven by ongoing strain accrual processes and that, despite low deformation rates, seismic activity in the zone is not decaying with time.

Concepts: Scientific method, Earthquake, Earthquake engineering, Seismology, Earthquake prediction, Aftershock, Earthquake storm, New Madrid Seismic Zone


The degree to which short-term non-tectonic processes, either natural and anthropogenic, influence the occurrence of earthquakes in active tectonic settings or ‘stable’ plate interiors, remains a subject of debate. Recent work in plate-boundary regions demonstrates the capacity for long-wavelength changes in continental water storage to produce observable surface deformation, induce crustal stresses and modulate seismicity rates. Here we show that a significant variation in the rate of microearthquakes in the intraplate New Madrid Seismic Zone at annual and multi-annual timescales coincides with hydrological loading in the upper Mississippi embayment. We demonstrate that this loading, which results in geodetically observed surface deformation, induces stresses within the lithosphere that, although of small amplitude, modulate the ongoing seismicity of the New Madrid region. Correspondence between surface deformation, hydrological loading and seismicity rates at both annual and multi-annual timescales indicates that seismicity variations are the direct result of elastic stresses induced by the water load.

Concepts: Plate tectonics, Induced demand, Earthquake, Mississippi River, Earthquake engineering, Seismology, Aftershock, New Madrid Seismic Zone


This paper presents a timely and detailed study of significant injection-induced seismicity recently observed in the Sichuan Basin, China, where shale-gas hydraulic fracturing has been initiated and the aggressive production of shale gas is planned for the coming years. Multiple lines of evidence, including an epidemic-type aftershock sequence model, relocated hypocenters, the mechanisms of 13 large events (M W  > 3.5), and numerically calculated Coulomb failure stress results, convincingly suggest that a series of earthquakes with moment magnitudes up to M W 4.7 has been induced by “short-term” (several months at a single well pad) injections for hydraulic fracturing at depths of 2.3 to 3 km. This, in turn, supports the hypothesis that they represent examples of injection-induced fault reactivation. The geologic reasons why earthquake magnitudes associated with hydraulic fracturing operations are so high in this area are discussed. Because hydraulic fracturing operations are on the rise in the Sichuan Basin, it would be beneficial for the geoscience, gas operator, regulator, and academic communities to work collectively to elucidate the local factors governing the high level of injection-induced seismicity, with the ultimate goal of ensuring that shale gas fracking can be carried out effectively and safely.

Concepts: Geology, Earthquake, Seismology, Subduction, Fault, Aftershock, 2008 Sichuan earthquake, Landslide dam