Discover the most talked about and latest scientific content & concepts.

Concept: Aerosol


The CDC recommends that healthcare settings provide influenza patients with facemasks as a means of reducing transmission to staff and other patients, and a recent report suggested that surgical masks can capture influenza virus in large droplet spray. However, there is minimal data on influenza virus aerosol shedding, the infectiousness of exhaled aerosols, and none on the impact of facemasks on viral aerosol shedding from patients with seasonal influenza. We collected samples of exhaled particles (one with and one without a facemask) in two size fractions (“coarse”>5 µm, “fine"≤5 µm) from 37 volunteers within 5 days of seasonal influenza onset, measured viral copy number using quantitative RT-PCR, and tested the fine-particle fraction for culturable virus. Fine particles contained 8.8 (95% CI 4.1 to 19) fold more viral copies than did coarse particles. Surgical masks reduced viral copy numbers in the fine fraction by 2.8 fold (95% CI 1.5 to 5.2) and in the coarse fraction by 25 fold (95% CI 3.5 to 180). Overall, masks produced a 3.4 fold (95% CI 1.8 to 6.3) reduction in viral aerosol shedding. Correlations between nasopharyngeal swab and the aerosol fraction copy numbers were weak (r = 0.17, coarse; r = 0.29, fine fraction). Copy numbers in exhaled breath declined rapidly with day after onset of illness. Two subjects with the highest copy numbers gave culture positive fine particle samples. Surgical masks worn by patients reduce aerosols shedding of virus. The abundance of viral copies in fine particle aerosols and evidence for their infectiousness suggests an important role in seasonal influenza transmission. Monitoring exhaled virus aerosols will be important for validation of experimental transmission studies in humans.

Concepts: Influenza, Number, Part, Particulate, Aerosol, Particulates, Reassortment, Global dimming


Aerosolized microorganisms may play an important role in climate change, disease transmission, water and soil contaminants, and geographic migration of microbes. While it is known that bioaerosols are generated when bubbles break on the surface of water containing microbes, it is largely unclear how viable soil-based microbes are transferred to the atmosphere. Here we report a previously unknown mechanism by which rain disperses soil bacteria into the air. Bubbles, tens of micrometres in size, formed inside the raindrops disperse micro-droplets containing soil bacteria during raindrop impingement. A single raindrop can transfer 0.01% of bacteria on the soil surface and the bacteria can survive more than one hour after the aerosol generation process. This work further reveals that bacteria transfer by rain is highly dependent on the regional soil profile and climate conditions.

Concepts: Archaea, Water, Precipitation, Climate, Atmosphere, Microorganism, Aerosol, Soil contamination


The potential risks associated with “toilet plume” aerosols produced by flush toilets is a subject of continuing study. This review examines the evidence regarding toilet plume bioaerosol generation and infectious disease transmission.

Concepts: Epidemiology, Infectious disease, Infection, Aerosol, Toilet, Toilets in Japan, Flush toilet, Bioaerosol


ABSTRACT Healthcare workers are exposed to potentially infectious airborne particles while providing routine care to coughing patients. However, much is not understood about the behavior of these aerosols and the risks they pose. We used a coughing patient simulator and a breathing worker simulator to investigate the exposure of healthcare workers to cough aerosol droplets, and to examine the efficacy of face shields in reducing this exposure. Our results showed that 0.9% of the initial burst of aerosol from a cough can be inhaled by a worker 46 cm (18 inches) from the patient. During testing of an influenza-laden cough aerosol with a volume median diameter (VMD) of 8.5 μm, wearing a face shield reduced the inhalational exposure of the worker by 96% in the period immediately after a cough. The face shield also reduced the surface contamination of a respirator by 97%. When a smaller cough aerosol was used (VMD = 3.4 μm), the face shield was less effective, blocking only 68% of the cough and 76% of the surface contamination. In the period from 1 to 30 minutes after a cough, during which the aerosol had dispersed throughout the room and larger particles had settled, the face shield reduced aerosol inhalation by only 23%. Increasing the distance between the patient and worker to 183 cm (72 inches) reduced the exposure to influenza that occurred immediately after a cough by 92%. Our results show that healthcare workers can inhale infectious airborne particles while treating a coughing patient. Face shields can substantially reduce the short-term exposure of healthcare workers to large infectious aerosol particles, but smaller particles can remain airborne longer and flow around the face shield more easily to be inhaled. Thus, face shields provide a useful adjunct to respiratory protection for workers caring for patients with respiratory infections. However, they cannot be used as a substitute for respiratory protection when it is needed.

Concepts: Health care provider, Patient, Respiratory physiology, Respiratory system, Inhalation, Aerosol, Face, Faces


Development of physiologically relevant test methods to analyse potential irritant effects to the respiratory tract caused by e-cigarette aerosols is required. This paper reports the method development and optimisation of an acute in vitro MTT cytotoxicity assay using human 3D reconstructed airway tissues and an aerosol exposure system. The EpiAirway™ tissue is a highly differentiated in vitro human airway culture derived from primary human tracheal/bronchial epithelial cells grown at the air-liquid interface, which can be exposed to aerosols generated by the VITROCELL® smoking robot. Method development was supported by understanding the compatibility of these tissues within the VITROCELL® system, in terms of airflow (L/min), vacuum rate (mL/min) and exposure time. Dosimetry tools (QCM) were used to measure deposited mass, to confirm the provision of e-cigarette aerosol to the tissues. EpiAirway™ tissues were exposed to cigarette smoke and aerosol generated from two commercial e-cigarettes for up to 6h. Cigarette smoke reduced cell viability in a time dependent manner to 12% at 6h. E-cigarette aerosol showed no such decrease in cell viability and displayed similar results to that of the untreated air controls. Applicability of the EpiAirway™ model and exposure system was demonstrated, showing little cytotoxicity from e-cigarette aerosol and different aerosol formulations when compared directly with reference cigarette smoke, over the same exposure time.

Concepts: Smoking, Tobacco, Cigarette, Nicotine, Cytotoxicity, Electronic cigarette, Smoke, Aerosol


Airborne transmission of the influenza virus contributes significantly to the spread of this infectious pathogen, particularly over large distances when carried by aerosol droplets with long survival times. Efficient sampling of virus-loaded aerosol in combination with a low limit of detection of the collected virus could enable rapid and early detection of airborne influenza virus at the point-of-care setting. Here, we demonstrate a successful sampling and detection of airborne influenza virus using a system specifically developed for such applications. Our system consists of a custom-made electrostatic precipitation (ESP)-based bioaerosol sampler that is coupled with downstream quantitative polymerase chain reaction (qPCR) analysis. Aerosolized viruses are sampled directly into a miniaturized collector with liquid volume of 150 μL, which constitutes a simple and direct interface with subsequent biological assays. This approach reduces sample dilution by at least one order of magnitude when compared to other liquid-based aerosol bio-samplers. Performance of our ESP-based sampler was evaluated using influenza virus-loaded sub-micron aerosols generated from both cultured and clinical samples. Despite the miniaturized collection volume, we demonstrate a collection efficiency of at least 10% and sensitive detection of a minimum of 3721 RNA copies. Furthermore, we show that an improved extraction protocol can allow viral recovery of down to 303 RNA copies and a maximum sampler collection efficiency of 47%. A device with such a performance would reduce sampling times dramatically, from a few hours with current sampling methods down to a couple of minutes with our ESP-based bioaerosol sampler.

Concepts: DNA, Infectious disease, Polymerase chain reaction, Molecular biology, Virus, Influenza, Aerosol, Computer virus


Despite ethanol’s penetration into urban transportation, observational evidence quantifying the consequence for the atmospheric particulate burden during actual, not hypothetical, fuel-fleet shifts, has been lacking. Here we analyze aerosol, meteorological, traffic, and consumer behavior data and find, empirically, that ambient number concentrations of 7-100-nm diameter particles rise by one-third during the morning commute when higher ethanol prices induce 2 million drivers in the real-world megacity of São Paulo to substitute to gasoline use (95% confidence intervals: +4,154 to +13,272 cm(-3)). Similarly, concentrations fall when consumers return to ethanol. Changes in larger particle concentrations, including US-regulated PM2.5, are statistically indistinguishable from zero. The prospect of increased biofuel use and mounting evidence on ultrafines' health effects make our result acutely policy relevant, to be weighed against possible ozone increases. The finding motivates further studies in real-world environments. We innovate in using econometrics to quantify a key source of urban ultrafine particles.The biofuel ethanol has been introduced into urban transportation in many countries. Here, by measuring aerosols in São Paulo, the authors find that high ethanol prices coincided with an increase in harmful nanoparticles by a third, as drivers switched from ethanol to cheaper gasoline, showing a benefit of ethanol.

Concepts: Scientific method, Gasoline, Ethanol, Particulate, Aerosol, Ethanol fuel, Diesel particulate matter, Internal combustion engine


This work aimed to develop an in vivo approach for measuring the duration of human bioaerosol infectivity. To achieve this, techniques designed to target short-term and long-term bioaerosol aging, were combined in a tandem system and optimized for the collection of human respiratory bioaerosols, without contamination. To demonstrate the technique, cough aerosols were sampled from two persons with cystic fibrosis and chronic Pseudomonas aeruginosa infection. Measurements and cultures from aerosol ages of 10, 20, 40, 900 and 2700 seconds were used to determine the optimum droplet nucleus size for pathogen transport and the airborne bacterial biological decay. The droplet nuclei containing the greatest number of colony forming bacteria per unit volume of airborne sputum were between 1.5 and 2.6 μm. Larger nuclei of 3.9 μm, were more likely to produce a colony when impacted onto growth media, because the greater volume of sputum comprising the larger droplet nuclei, compensated for lower concentrations of bacteria within the sputum of larger nuclei. Although more likely to produce a colony, the larger droplet nuclei were small in number, and the greatest numbers of colonies were instead produced by nuclei from 1.5 to 5.7 μm. Very few colonies were produced by smaller droplet nuclei, despite their very large numbers. The concentration of viable bacteria within the dried sputum comprising the droplet nuclei exhibited an orderly dual decay over time with two distinct half-lives. Nuclei exhibiting a rapid biological decay process with a 10 second half-life were quickly exhausted, leaving only a subset characterized by a half-life of greater than 10 minutes. This finding implied that a subset of bacteria present in the aerosol was resistant to rapid biological decay and remained viable in room air long enough to represent an airborne infection risk.

Concepts: Immune system, Bacteria, Pneumonia, Pseudomonas aeruginosa, Cystic fibrosis, Radioactive decay, Aerosol, Bioaerosol


ABSTRACT Respiratory protection provided by a particulate respirator is a function of particle penetration through filter media and through faceseal leakage. Faceseal leakage largely contributes to the penetration of particles through respirator and compromises protection. When faceseal leaks arise, filter penetration is assumed to be negligible. The contribution of filter penetration and faceseal leakage to total inward leakage (TIL) of submicron size bioaerosols is not well studied. To address this issue, TIL values for two N95 filtering facepiece respirator (FFR) models and two surgical mask (SM) models sealed to a manikin were measured at 8 L and 40 L breathing minute volumes with different artificial leak sizes. TIL values for different size (20-800 nm, electrical mobility diameter) NaCl particles representing submicron size bioaerosols were measured using a scanning mobility particle sizer. Efficiency of filtering devices was assessed by measuring the penetration against NaCl aerosol similar to the method used for NIOSH particulate filter certification. Results showed that the most penetrating particle size (MPPS) was ∼45 nm for both N95 FFR models and one of the two SM models, and ∼350 nm for the other SM model at sealed condition with no leaks as well as with different leak sizes. TIL values increased with increasing leak sizes and breathing minute volumes. Relatively, higher efficiency N95 and SM models showed lower TIL values. Filter efficiency of FFRs and SMs influenced the TIL at different flow rates and leak sizes. Overall, the data indicate that good fitting higher efficiency FFRs may offer higher protection against submicron size bioaerosols.

Concepts: Sociology, Aerosol, Respirator, Filters, Leak, Masks, Bioaerosol, Surgical mask


Abstract Background: Air-jet atomization is a common technique used for the generation of therapeutic aerosols from liposome suspensions for drug delivery to the lungs. Although the technique does not use an electric field, the aerosols generated by this technique are still charged, and this may affect respiratory drug deposition. Methods: In this study, the charge distribution of liposomes aerosolized by an air-jet atomizer was measured using a tandem differential mobility analyzer (TDMA) technique. The liposomes, composed of a mixture of two amphiphilic lipids and cholesterol, were synthesized by the dehydration-rehydration vesicle method. The effect of the precursor suspension properties, such as medium composition, pH, conductivity, and lipid mass concentration, on the charge distribution of the liposome aerosols was studied. Results and Conclusions: Results showed that the atomized liposomes have a bipolar charge distribution, and the number-fraction of charged liposome aerosols was influenced strongly by properties of the precursor solution under investigation. Liposomes synthesized in deionized water were observed to carry much higher charges than those synthesized in phosphate-buffered saline (PBS). Increasing the lipid mass concentration in the precursor suspension resulted in a decrease in the charge on the aerosols. Thus, the precursor suspension properties-composition, pH, and conductivity-can be used to control the magnitude of charge on liposome aerosols and to synthesize engineered liposome particles for the pulmonary delivery of drugs with controlled alveolar deposition and controlled delivery to alveolar macrophages.

Concepts: Electric charge, Membrane biology, Solution, Aerosol, Lipid bilayer, Suspension, Atomization, Atomic spectroscopy