SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Abiotic component

174

Mosquito feeding behaviour determines the degree of vector-host contact and may have a serious impact on the risk of West Nile virus (WNV) epidemics. Feeding behaviour also interacts with other biotic and abiotic factors that affect virus amplification and transmission.

Concepts: Mosquito, Ribavirin, Dengue fever, Mosquito control, West Nile virus, DEET, Biotic component, Abiotic component

148

The 24-h day involves cycles in environmental factors that impact organismal fitness. This is thought to select for organisms to regulate their temporal biology accordingly, through circadian and diel rhythms. In addition to rhythms in abiotic factors (such as light and temperature), biotic factors, including ecological interactions, also follow daily cycles. How daily rhythms shape, and are shaped by, interactions between organisms is poorly understood. Here, we review an emerging area, namely the causes and consequences of daily rhythms in the interactions between vectors, their hosts and the parasites they transmit. We focus on mosquitoes, malaria parasites and vertebrate hosts, because this system offers the opportunity to integrate from genetic and molecular mechanisms to population dynamics and because disrupting rhythms offers a novel avenue for disease control.

Concepts: Gene, Genetics, Evolution, Biology, Malaria, Ecology, Biotic component, Abiotic component

39

Ticks are the major vectors of most disease-causing agents to humans, companion animals and wildlife. Moreover, ticks transmit a greater variety of pathogenic agents than any other blood-feeding arthropod. Ticks have been expanding their geographic ranges in recent decades largely due to climate change. Furthermore, tick populations in many areas of their past and even newly established localities have increased in abundance. These dynamic changes present new and increasing severe public health threats to humans, livestock and companion animals in areas where they were previously unknown or were considered to be of minor importance. Here in this review, the geographic status of four representative tick species are discussed in relation to these public health concerns, namely, the American dog tick,Dermacentor variabilis, the lone star tick,Amblyomma americanum, the Gulf Coast Tick,Amblyomma maculatumand the black-legged tick,Ixodes scapularis. Both biotic and abiotic factors that may influence future range expansion and successful colony formation in new habitats are discussed.

Concepts: Lyme disease, Tick, Ixodes scapularis, Arachnid, North America, Dog, Biotic component, Abiotic component

11

Fusion is an important life history strategy for clonal organisms to increase access to shared resources, to compete for space, and to recover from disturbance. For reef building corals, fragmentation and colony fusion are key components of resilience to disturbance. Observations of small fragments spreading tissue and fusing over artificial substrates prompted experiments aimed at further characterizing Atlantic and Pacific corals under various conditions. Small (∼1-3 cm(2)) fragments from the same colony spaced regularly over ceramic tiles resulted in spreading at rapid rates (e.g., tens of square centimeters per month) followed by isogenic fusion. Using this strategy, we demonstrate growth, in terms of area encrusted and covered by living tissue, of Orbicella faveolata, Pseudodiploria clivosa, and Porites lobata as high as 63, 48, and 23 cm(2) per month respectively. We found a relationship between starting and ending size of fragments, with larger fragments growing at a faster rate. Porites lobata showed significant tank effects on rates of tissue spreading indicating sensitivity to biotic and abiotic factors. The tendency of small coral fragments to encrust and fuse over a variety of surfaces can be exploited for a variety of applications such as coral cultivation, assays for coral growth, and reef restoration.

Concepts: Coral, Coral reef, Scleractinia, Anthozoa, Polyp, Biotic component, Abiotic component, Microatoll

6

Plant biodiversity is often correlated with ecosystem functioning in terrestrial ecosystems. However, we know little about the relative and combined effects of above- and belowground biodiversity on multiple ecosystem functions (for example, ecosystem multifunctionality, EMF) or how climate might mediate those relationships. Here we tease apart the effects of biotic and abiotic factors, both above- and belowground, on EMF on the Tibetan Plateau, China. We found that a suite of biotic and abiotic variables account for up to 86% of the variation in EMF, with the combined effects of above- and belowground biodiversity accounting for 45% of the variation in EMF. Our results have two important implications: first, including belowground biodiversity in models can improve the ability to explain and predict EMF. Second, regional-scale variation in climate, and perhaps climate change, can determine, or at least modify, the effects of biodiversity on EMF in natural ecosystems.

Concepts: Biodiversity, Ecology, Climate, Ecosystem, Nature, Ecosystem ecology, Biotic component, Abiotic component

4

Biotic and abiotic factors are increasingly acknowledged to synergistically shape broad-scale species distributions. However, the relative importance of biotic and abiotic factors in predicting species distributions is unclear. In particular, biotic factors, such as predation and vegetation, including those resulting from anthropogenic land-use change, are underrepresented in species distribution modeling, but could improve model predictions. Using generalized linear models and model selection techniques, we used 129 estimates of population density of wild pigs (Sus scrofa) from 5 continents to evaluate the relative importance, magnitude, and direction of biotic and abiotic factors in predicting population density of an invasive large mammal with a global distribution. Incorporating diverse biotic factors, including agriculture, vegetation cover, and large carnivore richness, into species distribution modeling substantially improved model fit and predictions. Abiotic factors, including precipitation and potential evapotranspiration, were also important predictors. The predictive map of population density revealed wide-ranging potential for an invasive large mammal to expand its distribution globally. This information can be used to proactively create conservation/management plans to control future invasions. Our study demonstrates that the ongoing paradigm shift, which recognizes that both biotic and abiotic factors shape species distributions across broad scales, can be advanced by incorporating diverse biotic factors.

Concepts: Regression analysis, Biology, Ecology, Prediction, Future, Pig, Biotic component, Abiotic component

3

Biofilms are ubiquitous throughout drinking water distribution systems (DWDS), playing central roles in system performance and delivery of safe clean drinking water. However, little is known about how the interaction of abiotic and biotic factors influence the microbial communities of these biofilms in real systems. Results are presented here from a one-year study using in situ sampling devices installed in two operational systems supplied with different source waters. Independently of the characteristics of the incoming water and marked differences in hydraulic conditions between sites and over time, a core bacterial community was observed in all samples suggesting that internal factors (autogenic) are central in shaping biofilm formation and composition. From this it is apparent that future research and management strategies need to consider the specific microorganisms found to be able to colonise pipe surfaces and form biofilms, such that it might be possible to exclude these and hence protect the supply of safe clean drinking water.

Concepts: Archaea, Bacteria, Microbiology, Water, Biofilm, Microorganism, Biotic component, Abiotic component

3

Geographical range dynamics are driven by the joint effects of abiotic factors, human ecosystem modifications, biotic interactions and the intrinsic organismal responses to these. However, the relative contribution of each component remains largely unknown. Here, we compare the contribution of life-history attributes, broad-scale gradients in climate and geographical context of species' historical ranges, as predictors of recent changes in area of occupancy for 116 terrestrial British breeding birds (74 contractors, 42 expanders) between the early 1970s and late 1990 s. Regional threat classifications demonstrated that the species of highest conservation concern showed both the largest contractions and the smallest expansions. Species responded differently to climate depending on geographical distribution-northern species changed their area of occupancy (expansion or contraction) more in warmer and drier regions, whereas southern species changed more in colder and wetter environments. Species with slow life history (larger body size) tended to have a lower probability of changing their area of occupancy than species with faster life history, whereas species with greater natal dispersal capacity resisted contraction and, counterintuitively, expansion. Higher geographical fragmentation of species' range also increased expansion probability, possibly indicating a release from a previously limiting condition, for example through agricultural abandonment since the 1970s. After accounting statistically for the complexity and nonlinearity of the data, our results demonstrate two key aspects of changing area of occupancy for British birds: (i) climate is the dominant driver of change, but direction of effect depends on geographical context, and (ii) all of our predictors generally had a similar effect regardless of the direction of the change (contraction versus expansion). Although we caution applying results from Britain’s highly modified and well-studied bird community to other biogeographic regions, our results do indicate that a species' propensity to change area of occupancy over decadal scales can be explained partially by a combination of simple allometric predictors of life-history pace, average climate conditions and geographical context.

Concepts: Biology, Climate, Ecosystem, Change, Biogeography, Biotic component, Tess Gaerthé, Abiotic component

2

Carrion is a valuable nutrient resource used by a diversity of vertebrates across the globe. However, vertebrate scavenging ecology remains an understudied area of science, especially in regards to how biotic and abiotic factors influence scavenging community composition. Here we elucidate how fundamental biotic and abiotic factors interact to modulate the efficiency and composition of vertebrate scavengers by investigating scavenging dynamics across a large gradient in carcass sizes and habitat types representative of many temperate ecosystems, as well as between two seasons reflecting differences in invertebrate activity. We found carcass size and season influenced carcass fate and persistence, as well as the richness and composition of vertebrate scavenger communities utilizing carrion resources. Species richness, which increased as carcass size increased and was higher during the cool season, had a significant effect on carcass persistence. In addition, habitat type influenced carcass detection times by vertebrates, and we observed relatively distinct scavenging communities associated with carcasses of differing sizes. This research highlights a pervasive limitation to the interpretation of results of previous studies as research failing to incorporate carcass size and habitat type could result in the over or underrepresentation of vertebrate scavengers in food web dynamics. This article is protected by copyright. All rights reserved.

Concepts: Ecology, Ecosystem, Copyright, Scavenger, Detritivore, Biotic component, Abiotic component, Hyena

2

Coral reefs are dynamic systems whose composition is highly influenced by unpredictable biotic and abiotic factors. Understanding the spatial scale at which long-term predictions of reef composition can be made will be crucial for guiding conservation efforts. Using a 22-year time series of benthic composition data from 20 reefs on the Kenyan and Tanzanian coast, we developed Bayesian vector autoregressive state-space models for reef dynamics, incorporating among-site variability, and quantified their long-term behaviour. We estimated that if there were no among-site variability, the total long-term variability would be approximately one-third of its current value. Thus, our results showed that among-site variability contributes more to long-term variability in reef composition than does temporal variability. Individual sites were more predictable than previously thought, and predictions based on current snapshots are informative about long-term properties. Our approach allowed us to identify a subset of possible climate refugia sites with high conservation value, where the long-term probability of coral cover ≤0.1 (as a proportion of benthic cover of hard substrate) was very low. Analytical results show that this probability is most strongly influenced by among-site variability and by interactions among benthic components within sites. These findings suggest that conservation initiatives might be successful at the site scale as well as the regional scale.

Concepts: Time, Mathematics, Coral reef, Scleractinia, Probability, East Africa, Biotic component, Abiotic component