Discover the most talked about and latest scientific content & concepts.

Concept: 2004 Indian Ocean earthquake


It has been proposed that ~3.4 billion years ago an ocean fed by enormous catastrophic floods covered most of the Martian northern lowlands. However, a persistent problem with this hypothesis is the lack of definitive paleoshoreline features. Here, based on geomorphic and thermal image mapping in the circum-Chryse and northwestern Arabia Terra regions of the northern plains, in combination with numerical analyses, we show evidence for two enormous tsunami events possibly triggered by bolide impacts, resulting in craters ~30 km in diameter and occurring perhaps a few million years apart. The tsunamis produced widespread littoral landforms, including run-up water-ice-rich and bouldery lobes, which extended tens to hundreds of kilometers over gently sloping plains and boundary cratered highlands, as well as backwash channels where wave retreat occurred on highland-boundary surfaces. The ice-rich lobes formed in association with the younger tsunami, showing that their emplacement took place following a transition into a colder global climatic regime that occurred after the older tsunami event. We conclude that, on early Mars, tsunamis played a major role in generating and resurfacing coastal terrains.

Concepts: Climate, Landform, Flood, Greek loanwords, Pacific Ocean, Mars, 2004 Indian Ocean earthquake, Tsunami


A series of tsunami-like waves of non-seismic origin struck several southern European countries during the period of 23 to 27 June 2014. The event caused considerable damage from Spain to Ukraine. Here, we show that these waves were long-period ocean oscillations known as meteorological tsunamis which are generated by intense small-scale air pressure disturbances. An unique atmospheric synoptic pattern was tracked propagating eastward over the Mediterranean and the Black seas in synchrony with onset times of observed tsunami waves. This pattern favoured generation and propagation of atmospheric gravity waves that induced pronounced tsunami-like waves through the Proudman resonance mechanism. This is the first documented case of a chain of destructive meteorological tsunamis occurring over a distance of thousands of kilometres. Our findings further demonstrate that these events represent potentially dangerous regional phenomena and should be included in tsunami warning systems.

Concepts: Warning systems, Climate, Pacific Tsunami Warning Center, Deep-ocean Assessment and Reporting of Tsunamis, Europe, Tsunami warning system, 2004 Indian Ocean earthquake, Tsunami


The devastating 2004 Indian Ocean tsunami caught millions of coastal residents and the scientific community off-guard. Subsequent research in the Indian Ocean basin has identified prehistoric tsunamis, but the timing and recurrence intervals of such events are uncertain. Here we present an extraordinary 7,400 year stratigraphic sequence of prehistoric tsunami deposits from a coastal cave in Aceh, Indonesia. This record demonstrates that at least 11 prehistoric tsunamis struck the Aceh coast between 7,400 and 2,900 years ago. The average time period between tsunamis is about 450 years with intervals ranging from a long, dormant period of over 2,000 years, to multiple tsunamis within the span of a century. Although there is evidence that the likelihood of another tsunamigenic earthquake in Aceh province is high, these variable recurrence intervals suggest that long dormant periods may follow Sunda megathrust ruptures as large as that of the 2004 Indian Ocean tsunami.

Concepts: Aceh, Pacific Ocean, Indonesia, Somalia, Tsunami, Sumatra, Indian Ocean, 2004 Indian Ocean earthquake


Large earthquakes nucleate at tectonic plate boundaries, and their occurrence within a plate’s interior remains rare and poorly documented, especially offshore. The two large earthquakes that struck the northeastern Indian Ocean on 11 April 2012 are an exception: they are the largest strike-slip events reported in historical times and triggered large aftershocks worldwide. Yet they occurred within an intra-oceanic setting along the fossil fabric of the extinct Wharton basin, rather than on a discrete plate boundary. Here we show that the 11 April 2012 twin earthquakes are part of a continuing boost of the intraplate deformation between India and Australia that followed the Aceh 2004 and Nias 2005 megathrust earthquakes, subsequent to a stress transfer process recognized at other subduction zones. Using Coulomb stress change calculations, we show that the coseismic slips of the Aceh and Nias earthquakes can promote oceanic left-lateral strike-slip earthquakes on pre-existing meridian-aligned fault planes. We further show that persistent viscous relaxation in the asthenospheric mantle several years after the Aceh megathrust explains the time lag between the 2004 megathrust and the 2012 intraplate events. On a short timescale, the 2012 events provide new evidence for the interplay between megathrusts at the subduction interface and intraplate deformation offshore. On a longer geological timescale, the Australian plate, driven by slab-pull forces at the Sunda trench, is detaching from the Indian plate, which is subjected to resisting forces at the Himalayan front.

Concepts: Island arc, Mantle convection, Convergent boundary, Earthquake, 2004 Indian Ocean earthquake, Earth, Subduction, Plate tectonics


From 2000 to 2015, tsunamis and storms killed more than 430,000 people worldwide and affected a further >530 million, with total damages exceeding US$970 billion. These alarming trends, underscored by the tragic events of the 2004 Indian Ocean catastrophe, have fueled increased worldwide demands for assessments of past, present, and future coastal risks. Nonetheless, despite its importance for hazard mitigation, discriminating between storm and tsunami deposits in the geological record is one of the most challenging and hotly contended topics in coastal geoscience. To probe this knowledge gap, we present a 4500-year reconstruction of “tsunami” variability from the Mediterranean based on stratigraphic but not historical archives and assess it in relation to climate records and reconstructions of storminess. We elucidate evidence for previously unrecognized “tsunami megacycles” with three peaks centered on the Little Ice Age, 1600, and 3100 cal. yr B.P. (calibrated years before present). These ~1500-year cycles, strongly correlated with climate deterioration in the Mediterranean/North Atlantic, challenge up to 90% of the original tsunami attributions and suggest, by contrast, that most events are better ascribed to periods of heightened storminess. This timely and provocative finding is crucial in providing appropriately tailored assessments of coastal hazard risk in the Mediterranean and beyond.

Concepts: Radiocarbon dating, Pacific Ocean, Geology, Indian Ocean, 2004 Indian Ocean earthquake, Risk, Ocean, Atlantic Ocean


We present derivations of shallow water model equations of Korteweg-de Vries and Boussinesq type for equatorial tsunami waves in the f-plane approximation and discuss their applicability.This article is part of the theme issue ‘Nonlinear water waves’.

Concepts: 2004 Indian Ocean earthquake, Theme music, Adhémar Jean Claude Barré de Saint-Venant, Tsunami, Shallow water equations, Equations of fluid dynamics, Partial differential equations, Water waves


No previous study has been able to examine the association by taking account of risk factors for dementia before and after the disaster. We prospectively examined whether experiences of a disaster were associated with cognitive decline in the aftermath of the 2011 Great East Japan Earthquake and Tsunami. The baseline for our natural experiment was established in a survey of older community-dwelling adults who lived 80 km west of the epicenter 7 mo before the earthquake and tsunami. Approximately 2.5 y after the disaster, the follow-up survey gathered information about personal experiences of disaster as well as incidence of dementia from 3,594 survivors (82.1% follow-up rate). Our primary outcome was dementia diagnosis ascertained by in-home assessment during the follow-up period. Among our analytic sample (n = 3,566), 38.0% reported losing relatives or friends in the disaster, and 58.9% reported property damage. Fixed-effects regression indicated that major housing damage and home destroyed were associated with cognitive decline: regression coefficient for levels of dementia symptoms = 0.12, 95% confidence interval (CI): 0.01 to 0.23 and coefficient = 0.29, 95% CI: 0.17 to 0.40, respectively. The effect size of destroyed home is comparable to the impact of incident stroke (coefficient = 0.24, 95% CI: 0.11 to 0.36). The association between housing damage and cognitive decline remained statistically significant in the instrumental variable analysis. Housing damage appears to be an important risk factor for cognitive decline among older survivors in natural disasters.

Concepts: Epidemiology, Effect size, 2004 Indian Ocean earthquake, Dementia, Statistical significance, Regression analysis, Statistics, Earthquake


This paper examines the relationships between social participation and disaster risk reduction actions. A survey of 557 households in tsunami prone areas in Phang Nga, Thailand was conducted following the 2012 Indian Ocean earthquakes. We use a multivariate probit model to jointly estimate the likelihood of undertaking three responses to earthquake and tsunami hazards (namely, (1) following disaster-related news closely, (2) preparing emergency kits and/or having a family emergency plan, and (3) having an intention to migrate) and community participation. We find that those who experienced losses from the 2004 tsunami are more likely to participate in community activities and respond to earthquake hazards. Compared to men, women are more likely to prepare emergency kits and/or have an emergency plan and have a greater intention to migrate. Living in a community with a higher proportion of women with tertiary education increases the probability of engaging in community activities and carrying out disaster risk reduction measures. Individuals who participate in village-based activities are 5.2% more likely to undertake all three risk reduction actions compared to those not engaging in community activities. This implies that encouraging participation in community activities can have positive externalities in disaster mitigation.

Concepts: Disaster risk reduction, Probit model, Indian Ocean, Earthquake, Hazard, Tsunami, 2004 Indian Ocean earthquake, Emergency management


Many coastal communities throughout the world are threatened by local (or near-field) tsunamis that could inundate low-lying areas in a matter of minutes after generation. Although the hazard and sustainability literature often frames vulnerability conceptually as a multidimensional issue involving exposure, sensitivity, and resilience to a hazard, assessments often focus on one element or do not recognize the hazard context. We introduce an analytical framework for describing variations in population vulnerability to tsunami hazards that integrates (i) geospatial approaches to identify the number and characteristics of people in hazard zones, (ii) anisotropic path distance models to estimate evacuation travel times to safety, and (iii) cluster analysis to classify communities with similar vulnerability. We demonstrate this approach by classifying 49 incorporated cities, 7 tribal reservations, and 17 counties from northern California to northern Washington that are directly threatened by tsunami waves associated with a Cascadia subduction zone earthquake. Results suggest three primary community groups: (i) relatively low numbers of exposed populations with varied demographic sensitivities, (ii) high numbers of exposed populations but sufficient time to evacuate before wave arrival, and (iii) moderate numbers of exposed populations but insufficient time to evacuate. Results can be used to enhance general hazard-awareness efforts with targeted interventions, such as education and outreach tailored to local demographics, evacuation training, and/or vertical evacuation refuges.

Concepts: Plate tectonics, 2004 Indian Ocean earthquake, Pacific Ocean, Subduction, Demography, Tsunami, Earthquake, Cascadia subduction zone


Large coseismic slip was thought to be unlikely to occur on the shallow portions of plate-boundary thrusts, but the 11 March 2011 Tohoku-Oki earthquake [moment magnitude (Mw) = 9.0] produced huge displacements of ~50 meters near the Japan Trench with a resultant devastating tsunami. To investigate the mechanisms of the very large fault movements, we conducted high-velocity (1.3 meters per second) friction experiments on samples retrieved from the plate-boundary thrust associated with the earthquake. The results show a small stress drop with very low peak and steady-state shear stress. The very low shear stress can be attributed to the abundance of weak clay (smectite) and thermal pressurization effects, which can facilitate fault slip. This behavior provides an explanation for the huge shallow slip that occurred during the earthquake.

Concepts: Japan, Experiment, Tsunami, Earthquake engineering, 2004 Indian Ocean earthquake, Fault, Earthquake, Force